

Yaşam bilimleri için yapay öğrenme

Mehmet Gönen mehmetgonen@ku.edu.tr

Endüstri Mühendisliği Bölümü, Mühendislik Fakültesi Hesaplamalı Biyoloji Bölümü, Tıp Fakültesi

2 Temmuz 2018

Cok az eğitim örneği ile karmaşık problemlerin çözülmesi

- Cok az eğitim örneği ile karmaşık problemlerin çözülmesi
- Ceşitli veri kaynaklarının beraberce modellenmesi

- Cok az eğitim örneği ile karmaşık problemlerin çözülmesi
- Ceşitli veri kaynaklarının beraberce modellenmesi
- Test edilebilir hipotezler üretilmesi

- Cok az eğitim örneği ile karmaşık problemlerin çözülmesi
- Ceşitli veri kaynaklarının beraberce modellenmesi
- Test edilebilir hipotezler üretilmesi
- Çekirdek tabanlı yapay öğrenme yöntemleri

Enfeksiyon hastalıklarının modellenmesi

Enfeksiyon hastalıklarının modellenmesi Kırım–Kongo Kanamalı Ateşi (KKKA) hastalığı

Crimean-Congo Hemorrhagic Fever (CCHF) Virus Ecology

													Season
0	0	2	9	24	62	101	44	6	1	0	0	249	2004
0	0	0	8	27	77	95	51	3	4	0	0	265	2005
0	0	1	19	65	160	114	72	8	0	0	0	439	2006
0	0	2	25	119	216	224	90	40	1	0	0	717	2007
0	0	1	37	241	432	411	151	40	2	0	0	1315	2008
0	0	0	37	205	496	366	177	33	3	1	0	1318	2009
0	0	0	61	240	272	222	59	11	2	0	0	867	2010
0	0	1	29	149	341	349	180	19	5	2	0	1075	2011
0	0	1	31	223	233	201	90	13	3	1	0	796	2012
0	0	1	74	225	260	254	81	11	2	2	0	910	2013
0	4	6	95	218	238	280	108	13	5	0	0	967	2014
0	0	2	16	97	231	218	119	20	12	2	1	718	2015
0	4	17	441	1833	3018	2835	1222	217	40	8	1	9636	Total
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	

 $egin{aligned} m{y} &= m{f} + m{\xi} \ m{f} | \mathbf{X} &\sim \mathrm{Normal}(m{f}; m{0}, \mathbf{K}) \ m{\xi} | \sigma_y^2 &\sim \mathrm{Normal}(m{\xi}; m{0}, \sigma_y^2 \mathbf{I}) \end{aligned}$

$$y = f + \xi$$

$$f | \mathbf{X} \sim \operatorname{Normal}(f; \mathbf{0}, \mathbf{K})$$

$$\xi | \sigma_y^2 \sim \operatorname{Normal}(\xi; \mathbf{0}, \sigma_y^2 \mathbf{I})$$

$$\mathbf{K} = \begin{bmatrix} k(\boldsymbol{x}_1, \boldsymbol{x}_1) & k(\boldsymbol{x}_2, \boldsymbol{x}_1) & \cdots & k(\boldsymbol{x}_N, \boldsymbol{x}_1 \\ k(\boldsymbol{x}_1, \boldsymbol{x}_2) & k(\boldsymbol{x}_2, \boldsymbol{x}_2) & \cdots & k(\boldsymbol{x}_N, \boldsymbol{x}_2 \\ \vdots & \vdots & \ddots & \vdots \\ k(\boldsymbol{x}_1, \boldsymbol{x}_N) & k(\boldsymbol{x}_2, \boldsymbol{x}_N) & \cdots & k(\boldsymbol{x}_N, \boldsymbol{x}_N \end{bmatrix}$$

$$y = f + \xi$$

$$f | \mathbf{X} \sim \text{Normal}(f; \mathbf{0}, \mathbf{K})$$

$$\xi | \sigma_y^2 \sim \text{Normal}(\xi; \mathbf{0}, \sigma_y^2 \mathbf{I})$$

$$\mathbf{K} = \begin{bmatrix} k(x_1, x_1) & k(x_2, x_1) & \cdots & k(x_N, x_1) \\ k(x_1, x_2) & k(x_2, x_2) & \cdots & k(x_N, x_2) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_1, x_N) & k(x_2, x_N) & \cdots & k(x_N, x_N) \end{bmatrix}$$

$$\mathbf{E}[u_1 | \mathbf{x}_1, \mathbf{X}_2, \mathbf{y}_1 \sigma_1^2] = \mathbf{k}^\top (\mathbf{K} + \sigma_1^2 \mathbf{I})^{-1} \mathbf{y}$$

 $\begin{aligned} & \operatorname{L}[y_{\star} | \boldsymbol{x}_{\star}, \mathbf{X}, \boldsymbol{y}, \sigma_{y}] = \boldsymbol{k}_{\star} \left(\mathbf{K} + \sigma_{y} \mathbf{I} \right)^{-1} \boldsymbol{y} \\ & \operatorname{Var}[y_{\star} | \boldsymbol{x}_{\star}, \mathbf{X}, \boldsymbol{y}, \sigma_{y}^{2}] = k(x_{\star}, x_{\star}) - \boldsymbol{k}_{\star}^{\top} (\mathbf{K} + \sigma_{y}^{2} \mathbf{I})^{-1} \boldsymbol{k}_{\star} \end{aligned}$

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$$

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$$

 $\mathbf{K} = \mathbf{K}_s \otimes \mathbf{K}_t$

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$$

 $\mathbf{K} = \mathbf{K}_s \otimes \mathbf{K}_t$

$$\mathbf{E}[y_{\star}|\boldsymbol{x}_{\star}, \mathbf{X}, \mathbf{Y}, \sigma_{y}^{2}] = (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})^{\top} (\mathbf{K}_{s} \otimes \mathbf{K}_{t} + \sigma_{y}^{2} \mathbf{I})^{-1} \operatorname{vec}(\mathbf{Y})$$

$$\operatorname{Var}[y_{\star}|\boldsymbol{x}_{\star}, \mathbf{X}, \mathbf{Y}, \sigma_{y}^{2}] = k_{s}(s_{\star}, s_{\star}) k_{t}(t_{\star}, t_{\star}) - (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})^{\top} (\mathbf{K}_{s} \otimes \mathbf{K}_{t} + \sigma_{y}^{2} \mathbf{I})^{-1} (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})$$

 $\mathbf{K}_s = \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t = \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op}$

 $\mathbf{K}_s = \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t = \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op}$

$$\mathbf{K}_s \otimes \mathbf{K}_t = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t) (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

 $\mathbf{K}_s = \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t = \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op}$

$$\mathbf{K}_s \otimes \mathbf{K}_t = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t) (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

$$(\mathbf{K}_s \otimes \mathbf{K}_t + \sigma_y^2 \mathbf{I})^{-1} = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t + \sigma_y^2 \mathbf{I})^{-1} (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

10/43

Spatiotemporal

Enfeksiyon hastalıklarının modellenmesi Kestirim sonuçları

Enfeksiyon hastalıklarının modellenmesi Önerdiğimiz ikinci model

Enfeksiyon hastalıklarının modellenmesi 2016 yılı için kestirim sonuçları

Enfeksiyon hastalıklarının modellenmesi 2017 yılı için kestirim sonuçları

Karmaşık hastalıkların modellenmesi

encene? (ene

Gene expression variables

miRNA variables

SNP variables

Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism

Ryan J. Davis^{a,b,c,1}, Mehmet Gönen^{d,e,f,1}, Daciana H. Margineantu^{a,b,1}, Shlomo Handeli^{a,b}, Jherek Swanger^{a,b}, Pia Hoellerbauer^a, Patrick J. Paddison^a, Haiwei Gu^{g,h}, Daniel Raftery^{g,h}, Jonathan E. Grim^b, David M. Hockenbery^{a,b,2}, Adam A. Margolin^{d,2}, and Bruce E. Clurman^{a,b,2,3}

^aDivision of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; ^bDivision of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; ^cMolecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109; ^cDopartment of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239; ^cDepartment of Industrial Engineering, College of Engineering, Koç University, 34450 Istanbul, Turkey; ^cSchool of Medicine, Koç University, 34450 Istanbul, Turkey; ^BNorthwest Metabolomics Research Center, University of Washington, Seattle, WA 98109; and ^cDivision of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Kernelized Bayesian Transfer Learning*

Mehmet Gönen[†]

PNAS

mehmet.gonen@sagebase.org Sage Bionetworks Seattle, WA 98109, USA

Adam A. Margolin[†]

adam.margolin@sagebase.org Sage Bionetworks Seattle, WA 98109, USA

Karmaşık hastalıkların modellenmesi Farklı hastalıkların transfer öğrenimi ile modellenmesi

Karmaşık hastalıkların modellenmesi Farklı hastalıkların transfer öğrenimi ile modellenmesi

Karmaşık hastalıkların modellenmesi Farklı hastalıkların transfer öğrenimi ile modellenmesi

Bioinformatics, 34, 2018, i412–i421 doi: 10.1093/bioinformatics/bty239 ISMB 2018

Discriminating early- and late-stage cancers using multiple kernel learning on gene sets

Arezou Rahimi¹ and Mehmet Gönen^{2,3,4,*}

¹Graduate School of Sciences and Engineering, ²Department of Industrial Engineering, College of Engineering, ³School of Medicine, Koç University, İstanbul 34450, Turkey and ⁴Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA

*To whom correspondence should be addressed.

Cohort	Disease name	Stage I	Stage II	Stage III	Stage IV	Early (E1)	Late (E1)	Total (E1)	Early (E2)	Late (E2)	Total (E2)
ACC	Adrenocortical carcinoma	9	37	16	15	_	_	_	46	31	77
BLCA	Bladder urothelial carcinoma	2	130	140	134	_	_	_	132	274	406
BRCA	Breast invasive carcinoma	181	619	247	20	181	886	1067	800	267	1067
COAD	Colon adenocarcinoma	75	176	128	64	75	368	443	251	192	443
ESCA	Esophageal carcinoma	16	69	49	8	16	126	142	85	57	142
HNSC	Head and neck squamous cell carcinoma	25	70	78	259	25	407	429	95	337	429
KICH	Kidney chromophobe	20	25	14	6	20	45	65	45	20	65
KIRC	Kidney renal clear cell carcinoma	265	57	123	82	265	262	527	322	205	527
KIRP	Kidney renal papillary cell carcinoma	172	21	51	15	172	87	259	193	66	259
LIHC	Liver hepatocellular carcinoma	171	86	85	5	171	176	347	257	90	347
LUAD	Lung adenocarcinoma	274	121	84	26	274	231	505	395	110	505
LUSC	Lung squamous cell carcinoma	244	162	84	7	244	253	497	406	91	497
MESO	Mesothelioma	10	16	44	16	_	_	_	26	60	86
PAAD	Pancreatic adenocarcinoma	21	146	3	4	21	153	174	_	_	_
READ	Rectum adenocarcinoma	30	51	51	24	30	126	156	81	75	156
SKCM	Skin cutaneous melanoma	2	66	27	3	_	_	_	68	30	98
STAD	Stomach adenocarcinoma	53	111	150	38	53	299	352	164	188	352
TGCT	Testicular germ cell tumours	55	12	14	0	55	26	81	_	_	_
THCA	Thyroid carcinoma	281	52	112	55	281	219	500	333	167	500
UVM	Uveal melanoma	0	39	36	4	_	—	—	39	40	79
					Total	1883	3664	5547	3738	2.300	6038

$$\begin{array}{ll} \mathsf{min.} & \frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + C \sum_{i=1}^{N} \xi_{i} \\ \mathsf{w.r.t.} & \boldsymbol{w} \in \mathbb{R}^{D}, \ \boldsymbol{\xi} \in \mathbb{R}^{N}, \ b \in \mathbb{R} \\ \mathsf{s.t.} & y_{i} (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} + b) \geq 1 - \xi_{i} \quad \forall i \\ & \xi_{i} \geq 0 \quad \forall i \end{array}$$

$$\begin{array}{ll} \text{min.} & -\sum_{i=1}^{N} \alpha_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^\top \boldsymbol{x}_j \\ \text{w.r.t.} & \boldsymbol{\alpha} \in \mathbb{R}^N \\ \text{s.t.} & \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & C \ge \alpha_i \ge 0 \quad \forall i \end{array}$$

$$\begin{array}{ll} \text{min.} & -\sum_{i=1}^{N} \alpha_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \sum_{m=1}^{P} \eta_m k_m(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \text{w.r.t.} & \boldsymbol{\alpha} \in \mathbb{R}^N, \ \boldsymbol{\eta} \in \mathbb{R}^P \\ \text{s.t.} & \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & C \ge \alpha_i \ge 0 \quad \forall i \\ & \sum_{m=1}^{P} \eta_m = 1 \\ & \eta_m \ge 0 \quad \forall m \end{array}$$

$$\eta_m^{(t+1)} = \frac{\eta_m^{(t)} \sqrt{\sum_{i=1}^N \sum_{j=1}^N \alpha_i^{(t)} \alpha_j^{(t)} y_i y_j k_m(\boldsymbol{x}_i, \boldsymbol{x}_j)}}{\sum_{o=1}^P \eta_o^{(t)} \sqrt{\sum_{i=1}^N \sum_{j=1}^N \alpha_i^{(t)} \alpha_j^{(t)} y_i y_j k_o(\boldsymbol{x}_i, \boldsymbol{x}_j)}} \qquad \forall m_i$$

Karmaşık hastalıkların modellenmesi Kestirim sonuçları (Erken aşama: I. Geç aşama: II, III ve IV)

29/43

Karmaşık hastalıkların modellenmesi Kestirim sonuçları (Erken aşama: I ve II. Geç aşama: III ve IV)

30/43

Gene set_P

- 20 cancer types
- **7,655 patients**

$$\begin{array}{ll} \min. & \frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + C \sum_{i=1}^{N} (\xi_{i}^{+} + (1 - \delta_{i})\xi_{i}^{-}) \\ \text{w.r.t.} & \boldsymbol{w} \in \mathbb{R}^{D}, \ \boldsymbol{\xi}^{+} \in \mathbb{R}^{N}, \ \boldsymbol{\xi}^{-} \in \mathbb{R}^{N}, \ b \in \mathbb{R} \\ \text{s.t.} & \epsilon + \xi_{i}^{+} \geq y_{i} - \boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b \quad \forall i \\ & \epsilon + \xi_{i}^{-} \geq \boldsymbol{w}^{\top} \boldsymbol{x}_{i} + b - y_{i} \quad \forall i \\ & \xi_{i}^{+} \geq 0 \quad \forall i \\ & \xi_{i}^{-} \geq 0 \quad \forall i \end{array}$$

$$\begin{array}{ll} \min & -\sum_{i=1}^{N} y_i (\alpha_i^+ - \alpha_i^-) + \epsilon \sum_{i=1}^{N} (\alpha_i^+ + \alpha_i^-) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i^+ - \alpha_i^-) (\alpha_j^+ - \alpha_j^-) \boldsymbol{x}_i^\top \boldsymbol{x}_j \\ \text{w.r.t.} & \boldsymbol{\alpha}^+ \in \mathbb{R}^N, \ \boldsymbol{\alpha}^- \in \mathbb{R}^N \\ \text{s.t.} & \sum_{i=1}^{N} (\alpha_i^+ - \alpha_i^-) = 0 \\ & C \ge \alpha_i^+ \ge 0 \quad \forall i \\ & C(1 - \delta_i) \ge \alpha_i^- \ge 0 \quad \forall i \end{array}$$

$$\begin{array}{ll} \min & & -\sum_{i=1}^{N} y_i (\alpha_i^+ - \alpha_i^-) + \epsilon \sum_{i=1}^{N} (\alpha_i^+ + \alpha_i^-) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i^+ - \alpha_i^-) (\alpha_j^+ - \alpha_j^-) \sum_{m=1}^{P} \eta_m k_m (\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \text{w.r.t.} \quad & \boldsymbol{\alpha}^+ \in \mathbb{R}^N, \ \boldsymbol{\alpha}^- \in \mathbb{R}^N, \ \boldsymbol{\eta} \in \mathbb{R}^P \\ \text{s.t.} \quad & \sum_{i=1}^{N} (\alpha_i^+ - \alpha_i^-) = 0 \\ & C \ge \alpha_i^+ \ge 0 \quad \forall i \\ & C(1 - \delta_i) \ge \alpha_i^- \ge 0 \quad \forall i \\ & \sum_{m=1}^{P} \eta_m = 1 \\ & \eta_m \ge 0 \quad \forall m \end{array}$$

$$\eta_m^{(t+1)} = \frac{\eta_m^{(t)} \sqrt{\sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{+(t)} - \alpha_i^{-(t)})(\alpha_j^{+(t)} - \alpha_j^{-(t)})k_m(\boldsymbol{x}_i, \boldsymbol{x}_j)}}{\sum_{o=1}^P \eta_o^{(t)} \sqrt{\sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{+(t)} - \alpha_i^{-(t)})(\alpha_j^{+(t)} - \alpha_j^{-(t)})k_o(\boldsymbol{x}_i, \boldsymbol{x}_j)}} \quad \forall m$$

Karmaşık hastalıkların modellenmesi Sağ kalım analizi kestirim sonuçları

38/43

Saşam bilimleri uygulamaları için çekirdek tabanlı yapay öğrenme yöntemleri

- Saşam bilimleri uygulamaları için çekirdek tabanlı yapay öğrenme yöntemleri
- Az sayıda ve yüksek boyutlu örnekten öğrenebilme

- Saşam bilimleri uygulamaları için çekirdek tabanlı yapay öğrenme yöntemleri
- Az sayıda ve yüksek boyutlu örnekten öğrenebilme
- Farklı özellikteki veri kaynaklarını birleştirebilme

- Saşam bilimleri uygulamaları için çekirdek tabanlı yapay öğrenme yöntemleri
- Az sayıda ve yüksek boyutlu örnekten öğrenebilme
- Farklı özellikteki veri kaynaklarını birleştirebilme
- Test edilebilir hipotezler üretmeye uygun bilgi çıkarımı

	Overview Repositories 16 Stars 0 Followers 65 Following 0									
Gam	Snarth repositories	Type: All +	Language: All •	New						
SA	path2surv Pathway/Gene Set-Based Survival Analysis a R Updated 25 days ago									
Nehmet Gönen nehmetgonen	gsps									
Add a bio	Gene Set-Based Patient Subtyping									
L Koç University 2 İstanbul 3 mehmetgönenSiku,edu.tr 9 http://frome.ku.edu.tr/-mehm	gsbc Gene Set-Besed Classification ● R : Updated on Apr 18 :									
	Sgpr Structured Gaussian Process Regression									

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Hesaplamalı Onkoloji İçin Yolak Tabanlı Çekirdek Öğrenme Algoritmaları (EEEAG 117E181)

- Türkiye Bilimler Akademisi (TÜBA)
 - Ustün Başarılı Genç Bilim İnsanlarını Ödüllendirme Programı (GEBİP)
- Bilim Akademisi (BA)
 - Bilim Akademisi Genç Bilim İnsanları Ödül Programı (BAGEP)