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Çeşitli veri kaynaklarının beraberce modellenmesi

Test edilebilir hipotezler üretilmesi

Çekirdek tabanlı yapay öğrenme yöntemleri
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Enfeksiyon hastalıklarının modellenmesi
Kırım–Kongo Kanamalı Ateşi (KKKA) hastalığı
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Enfeksiyon hastalıklarının modellenmesi
Türkiye’de KKKA
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Enfeksiyon hastalıklarının modellenmesi
Türkiye’de KKKA

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Total

Season

0 0 2 9 24 62 101 44 6 1 0 0 249

0 0 0 8 27 77 95 51 3 4 0 0 265

0 0 1 19 65 160 114 72 8 0 0 0 439

0 0 2 25 119 216 224 90 40 1 0 0 717

0 0 1 37 241 432 411 151 40 2 0 0 1315

0 0 0 37 205 496 366 177 33 3 1 0 1318

0 0 0 61 240 272 222 59 11 2 0 0 867

0 0 1 29 149 341 349 180 19 5 2 0 1075

0 0 1 31 223 233 201 90 13 3 1 0 796

0 0 1 74 225 260 254 81 11 2 2 0 910

0 4 6 95 218 238 280 108 13 5 0 0 967

0 0 2 16 97 231 218 119 20 12 2 1 718

0 4 17 441 1833 3018 2835 1222 217 40 8 1 9636
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Enfeksiyon hastalıklarının modellenmesi
Gauss süreci regresyon modeli

y = f + ξ

f |X ∼ Normal(f ;0,K)

ξ|σ2y ∼ Normal(ξ;0, σ2yI)

K =




k(x1,x1) k(x2,x1) · · · k(xN ,x1)
k(x1,x2) k(x2,x2) · · · k(xN ,x2)

...
...

. . .
...

k(x1,xN ) k(x2,xN ) · · · k(xN ,xN )




E[y?|x?,X,y, σ
2
y ] = k

>
? (K+ σ2yI)

−1y

Var[y?| x?,X,y, σ
2
y ] = k(x?, x?)− k>? (K+ σ2yI)

−1k?
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Enfeksiyon hastalıklarının modellenmesi
Yapısal Gauss süreci regresyon modeli

k(xi,xj) = k((sl, tp), (sm, tq)) = ks(sl, sm)kt(tp, tq)

K = Ks ⊗Kt

E[y?|x?,X,Y, σ
2
y] = (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1 vec(Y)

Var[y?|x?,X,Y, σ
2
y] = ks(s?, s?)kt(t?, t?)− (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1(ks,? ⊗ kt,?)

7/43



Enfeksiyon hastalıklarının modellenmesi
Yapısal Gauss süreci regresyon modeli

k(xi,xj) = k((sl, tp), (sm, tq)) = ks(sl, sm)kt(tp, tq)

K = Ks ⊗Kt

E[y?|x?,X,Y, σ
2
y] = (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1 vec(Y)

Var[y?|x?,X,Y, σ
2
y] = ks(s?, s?)kt(t?, t?)− (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1(ks,? ⊗ kt,?)

7/43



Enfeksiyon hastalıklarının modellenmesi
Yapısal Gauss süreci regresyon modeli

k(xi,xj) = k((sl, tp), (sm, tq)) = ks(sl, sm)kt(tp, tq)

K = Ks ⊗Kt

E[y?|x?,X,Y, σ
2
y] = (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1 vec(Y)

Var[y?|x?,X,Y, σ
2
y] = ks(s?, s?)kt(t?, t?)− (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)
−1(ks,? ⊗ kt,?)

7/43



Enfeksiyon hastalıklarının modellenmesi
Yapısal Gauss süreci regresyon modeli

Ks = UsDsU
>
s

Kt = UtDtU
>
t

Ks ⊗Kt = (Us ⊗Ut)(Ds ⊗Dt)(Us ⊗Ut)
>

(Ks ⊗Kt + σ2yI)
−1 = (Us ⊗Ut)(Ds ⊗Dt + σ2yI)

−1(Us ⊗Ut)
>
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Enfeksiyon hastalıklarının modellenmesi
Önerdiğimiz ilk model
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Enfeksiyon hastalıklarının modellenmesi
Kestirim sonuçları
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Enfeksiyon hastalıklarının modellenmesi
Kestirim sonuçları
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Enfeksiyon hastalıklarının modellenmesi
Önerdiğimiz ikinci model
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Enfeksiyon hastalıklarının modellenmesi
2016 yılı için kestirim sonuçları
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Enfeksiyon hastalıklarının modellenmesi
2017 yılı için kestirim sonuçları
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Enfeksiyon hastalıklarının modellenmesi
Öznitelik ağırlıkları
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Karmaşık hastalıkların modellenmesi
Karmaşıklık nereden geliyor?

Meta-dimensional analysis
An approach whereby all 
scales of data are combined 
simultaneously to produce 
complex models defined  
as multiple variables from 
multiple scales of data.

Multi-staged analysis
A stepwise or hierarchical 
analysis method that reduces 
the search space through 
different stages of analysis.

Systems genomics
An analysis approach that 
models the complex inter- and 
intra-individual variations  
of traits and diseases using 
data from next-generation 
omic data.

Data integration
The incorporation of 
multi-omic information in  
a meaningful way to provide a 
more comprehensive analysis 
of a biological point of interest.

In this Review, we describe the principles of meta-
dimensional analysis and multi-staged analysis, and 
provide an overview of some of the approaches that 
are used to predict a given quantitative or categorical 
outcome, the tools available to implement these analy-
ses, and the various strengths and weaknesses of these 
strategies. In addition, we describe the analytical chal-
lenges that emerge with data sets of this magnitude, and 
provide our perspective on how such systems genomic 
analyses might develop in the future.

Why integrate data?
Data integration can have numerous meanings; however, 
in this Review, we use it to mean the process by which 
different types of omic data are combined as predictor 
variables to allow more thorough and comprehensive 
modelling of complex traits or phenotypes — which are 
likely to be the result of an elaborate interplay among 
biological variation at various levels of regulation — 
through the identification of more informative models. 
Data integration methods are now emerging that aim 
to bridge the gap between our ability to generate vast 
amounts of data and our understanding of biology, thus 

reflecting the complexity within biological systems. 
The primary motivation behind integrated data analy-
sis is to identify key genomic factors, and importantly 
their interactions, that explain or predict disease risk or 
other biological outcomes. The success in understand-
ing the genetic and genomic architecture of complex 
phenotypes has been modest, and this could be due to 
our limited exploration of the interactions among the 
genome, transcriptome, metabolome and so on. Data 
integration may provide improved power to identify 
the important genomic factors and their interactions 
(BOX 1). In addition, modelling the complexity of, and 
the interactions between, variation in DNA, gene 
expression, methylation, metabolites and proteins 
may improve our understanding of the mechanism 
or causal relationships of complex-trait architecture. 
There are two main approaches to data integration: 
multi-staged analysis, which involves integrating 
information using a stepwise or hierarchical analysis 
approach; and meta-dimensional analysis, which refers 
to the concept of integrating multiple different data 
types to build a multi variate model associated with a 
given outcome16–18.

Nature Reviews | Genetics

• SNP
• CNV
• LOH
• Genomic
    rearrangement
• Rare variant

• DNA methylation
• Histone modification
• Chromatin 
    accessibility
• TF binding
• miRNA

• Gene expression
• Alternative splicing
• Long non-coding
    RNA
• Small RNA

• Protein
    expresssion
• Post-translational
    modification
• Cytokine array

• Metabolite
    profiling in
    serum, plasma,
    urine, CSF, etc.

Genome ProteomeTranscriptomeEpigenome

DNA Gene mRNA
TF Metabolites

Protein

Transcription Expression Translation Function

Alternative
splicing

miRNA

TFbs

TFbs

TFbs

Me

Histone

Metabolome Phenome

• Cancer

• Metabolic
   syndrome

• Psychiatric
   disease

Figure 1 | Biological systems multi-omics from the genome, epigenome, 
transcriptome, proteome and metabolome to the phenome.  
Heterogeneous genomic data exist within and between levels, for example, 
single-nucleotide polymorphism (SNP), copy number variation (CNV), loss 
of heterozygosity (LOH) and genomic rearrangement, such as translocation, 
at the genome level; DNA methylation, histone modification, chromatin 
accessibility, transcription factor (TF) binding and micro RNA (miRNA) at the 

epigenome level; gene expression and alternative splicing at the 
transcriptome level; protein expression and post-translational modification 
at the proteome level; and metabolite profiling at the metabolome level. 
Arrows indicate the flow of genetic information from the genome level to 
the metabolome level and, ultimately, to the phenome level. The red crosses 
indicate inactivation of transcription or translation. CSF, cerebrospinal  
fluid; Me, methylation; TFBS, transcription factor-binding site.
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Focusing on one platform risks 
missing an obvious signal!!!
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Karmaşık hastalıkların modellenmesi
Verileri nasıl birleştirmeliyiz?

Multivariate Cox LASSO 
(least absolute shrinkage 
and selection operator) 
model
A method that performs 
variable selection via LASSO, 
followed by a multivariate Cox 
regression analysis.

Concatenation-based integration. Concatenation-based 
integration combines multiple data matrices for each 
sample into one large input matrix before constructing 
a model. One advantage of concatenation-based integra-
tion is that, after it is determined how to combine the 
variables into one matrix, it is relatively easy to use any 
statistical method for continuous and categorical data 
for analysis. For example, Fridley et al.54 performed con-
catenation-based integration by incorporating multiple 
types of genomic data into an association analysis with a 
complex phenotype using a Bayesian modelling strategy. 
Data from SNPs and mRNA gene expression were com-
bined into a single data matrix, and the joint relationship 
of mRNA gene expression and SNP genotypes was then 
modelled using a Bayesian integrative model to predict 
a quantitative phenotype (for example, drug cytotoxic-
ity). Mankoo et al.55 predicted time to recurrence and 
survival in ovarian cancer using copy number altera-
tion, methylation, miRNA and gene expression data 
using a multivariate Cox LASSO (least absolute shrinkage  
and selection operator) model. This strategy involves per-
forming variable selection via LASSO, rather than a 

stepwise method, and then modelling the selected set of 
variables in a Cox regression. The other main advantage 
of this approach is that concatenation-based integra-
tion is particularly useful for considering interactions 
between different types of genomic data. For example, if 
the underlying model that one is trying to detect is a SNP 
interacting with metabolite to explain disease risk and  
if the two variables are not combined into one model, 
then the effect may be missed. This approach has been 
used to combine SNP and gene expression data to pre-
dict high-density lipoprotein cholesterol levels18,56, and 
to identify interactions between copy number altera-
tion, methylation, miRNA and gene expression data  
associated with cancer clinical outcomes57.

The challenge with concatenation-based integration 
is identifying the best approach for combining multi-
ple matrices that include data from different scales in 
a meaningful way. For example, SNP data contain 0, 1 
or 2 as values corresponding to the copies of a specific 
allele per individual; copy number data may consist of 
–2, –1, 0, 1 or 2 as values corresponding to copy number 
status in a given genetic region (although they can also 

Nature Reviews | Genetics

a  Concatenation-based integration b  Transformation-based integration c  Model-based integration

+ +

+ +

Gene expression matrix miRNA matrix

Phenotype 1

Phenotype 2

Patient 1
Patient 2
Patient 3

…

Patient n

Gene expression variables

Pa
ti

en
ts

Gene 1

Gene 2

Gene 3 …

Gene j

Patient 1
Patient 2
Patient 3

…

Patient n

miRNA variables

Pa
ti

en
ts

miR
NA 1

miR
NA 2

miR
NA 3 …

miR
NA k

SNP matrix

Patient 1
Patient 2
Patient 3

…

Patient n

SNP variables

Pa
ti

en
ts

SNP 1
SNP 2

SNP 3 …
SNP i

Figure 4 |  Categorization of meta-dimensional analysis.  
Meta-dimensional analysis can be divided into three categories. 
a|^|Concatenation-based integration involves combining data sets Hrom 
different data types at the raw or processed data level before modelling 
and analysis. b | Transformation-based integration involves performing 
mapping or data transformation of the underlying data sets  

before analysis, and the modelling approach is applied at the level  
of transformed matrices. c | Model-based integration is the process of 
performing analysis on each data type independently, followed by 
integration of the resultant models to generate knowledge about the 
trait  of  interest.  miRNA, microRNA; SNP, single-nucleotide 
polymorphism.
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The Fbw7 (F-box/WD repeat-containing protein 7) ubiquitin ligase
targetsmultiple oncoproteins for degradation and is commonlymutated
in cancers. Like other pleiotropic tumor suppressors, Fbw7’s complex
biology has impeded our understanding of how Fbw7 mutations pro-
mote tumorigenesis and hindered the development of targeted thera-
pies. To address these needs, we employed a transfer learning approach
to derive gene-expression signatures from The Cancer Gene Atlas data-
sets that predict Fbw7 mutational status across tumor types and identi-
fied the pathways enriched within these signatures. Genes involved in
mitochondrial function were highly enriched in pan-cancer signatures
that predict Fbw7 mutations. Studies in isogenic colorectal cancer cell
lines that differed in Fbw7 mutational status confirmed that Fbw7
mutations increase mitochondrial gene expression. Surprisingly,
Fbw7 mutations shifted cellular metabolism toward oxidative phos-
phorylation and caused context-specific metabolic vulnerabilities. Our
approach revealed unexpected metabolic reprogramming and possi-
ble therapeutic targets in Fbw7-mutant cancers and provides a frame-
work to study other complex, oncogenic mutations.

metabolism | ubiquitin | Fbw7 | genomics | informatics

Current technologies afford genome-scale characterization of
the mutational and transcriptional landscape of thousands of

human tumors, enabling a shift toward a taxonomy of cancer and
targeted therapies based upon molecular criteria. The ability to
reclassify tumors across organ sites based on shared mutations implies
that driver mutations deregulate common oncogenic pathways across
tissue types. However, many commonly mutated cancer genes (e.g.,
c-Myc, p53) regulate diverse processes, and their complex biology
has confounded mechanistic studies of carcinogenesis and targeted
therapy development. We thus explored the hypothesis that gene-
expression signatures that predict a tumor’s mutational status for a
specific gene across organ sites may reveal insights into these types of
oncogenic mutations. Toward this goal, we employed a machine-
learning technique, kernelized Bayesian transfer learning
(KBTL), to infer transcriptional signatures predictive of mutation
status across multiple tumor types profiled in The Cancer Genome
Atlas (TCGA) datasets (1).
Fbw7 is the substrate receptor of a Skp1–F-box–Cullin ubiquitin

ligase that targets a network of substrates for proteasomal degrada-
tion after they become phosphorylated (2–5). Many Fbw7 substrates
are oncoproteins, and Fbw7 is one of the most commonly mutated
human tumor suppressors (3, 4, 6, 7). Heterozygous missense
mutations that target one of three key Fbw7 arginine residues
that interact with substrate phosphates (R465, R479, or R505;
hereafter referred to as “Fbw7ARG”) are the most common
Fbw7 mutations. Fbw7ARG are thought to be dominant-negative
alleles, but the mechanisms driving their selection are poorly
understood (3, 8). Because many Fbw7 substrates are master

transcription factors (TFs), Fbw7 mutations may broadly impact
gene expression. Moreover, Fbw7-associated tumorigenesis likely
involves the combinatorial activities of multiple stabilized onco-
proteins rather than a single oncogenic driver. We thus chose Fbw7
as a test case of a complex and poorly understood cancer gene to
study through the use of KBTL. We developed gene-expression
signatures that predict Fbw7 mutational status and identified the
biologic pathways enriched within Fbw7 predictive signatures, with
the goal of developing insights into these mutations. Our approach
revealed unexpected metabolic reprogramming and possible ther-
apeutic targets in Fbw7-mutant cancer cells and provides a frame-
work to study other complex oncogenic mutations.

Results
Inferring Cross-Tissue Transcriptional Signatures Associated with
Cancer Gene Mutations. We adapted the KBTL methodology that
we recently developed (1) to discriminate mutation-associated
transcriptional processes shared across tumor types (Fig. 1 A and B).
KBTL allows multiple related prediction tasks to be solved jointly by
projecting feature matrices from each task onto a shared low-
dimensional subspace inferred to yield high predictive accuracy
across tasks. In the current application, we treat each tumor type as a
separate task and infer gene-expression–based predictors of the mu-
tation status of a given gene in each tumor type, using KBTL to identify
gene-expression patterns (i.e., low-dimensional projections of the gene

Significance

Tumor suppression by the Fbw7 ubiquitin ligase remains poorly
understood. Here, we used informatics and engineered cancer
cells to show that Fbw7 mutations cause metabolic reprogram-
ming by increasing oxidative phosphorylation and metabolic vul-
nerabilities that may represent therapeutic targets. Our approach
may be applied to study other complex cancer genes.
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Abstract
Transfer learning considers related but distinct tasks
defined on heterogenous domains and tries to transfer
knowledge between these tasks to improve generaliza-
tion performance. It is particularly useful when we do
not have sufficient amount of labeled training data in
some tasks, which may be very costly, laborious, or
even infeasible to obtain. Instead, learning the tasks
jointly enables us to effectively increase the amount of
labeled training data. In this paper, we formulate a ker-
nelized Bayesian transfer learning framework that is a
principled combination of kernel-based dimensionality
reduction models with task-specific projection matrices
to find a shared subspace and a coupled classification
model for all of the tasks in this subspace. Our two
main contributions are: (i) two novel probabilistic mod-
els for binary and multiclass classification, and (ii) very
efficient variational approximation procedures for these
models. We illustrate the generalization performance of
our algorithms on two different applications. In com-
puter vision experiments, our method outperforms the
state-of-the-art algorithms on nine out of 12 benchmark
supervised domain adaptation experiments defined on
two object recognition data sets. In cancer biology ex-
periments, we use our algorithm to predict mutation
status of important cancer genes from gene expression
profiles using two distinct cancer populations, namely,
patient-derived primary tumor data and in-vitro-derived
cancer cell line data. We show that we can increase
our generalization performance on primary tumors us-
ing cell lines as an auxiliary data source.

1 Introduction
In many real-life applications, obtaining sufficient amount of
labeled training data to have a reliable predictor may be very
costly, laborious, or even infeasible. Instead, we can make
use of labeled training data available from related tasks to
increase our generalization performance. Transfer learning
(also known as domain adaptation or cross-domain learning)

⇤This study was financially supported by the Integrative Can-
cer Biology Program of the National Cancer Institute (grant no
1U54CA149237).

†Present address: Department of Biomedical Engineering, Ore-
gon Health & Science University, Portland, OR 97239, USA.
Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aims to transfer knowledge between related tasks defined on
heterogenous domains (Pan and Yang 2010). Heterogeneity
may be due to different feature representations or data dis-
tributions over the same set of features. This setup is signifi-
cantly different from multitask learning where we are given
tasks with data points from the same feature representation
(Caruana 1997; Argyriou, Evgeniou, and Pontil 2008).

Transfer learning algorithms are well-suited for natural
language processing, computer vision, and computational
biology applications due to their inherent suitability for
knowledge transfer. For example, text collections from dif-
ferent languages, image collections from different types of
recording devices, or biospecimen collections from different
tissue types are natural candidates for transfer learning.

1.1 Related Work
Blitzer, McDonald, and Pereira (2006) find correspondences
among features from different tasks and learn a shared fea-
ture space using these correspondences. Daumé III (2007)
replicates input features to produce shared and domain-
specific features, which are jointly fed into a supervised
method to perform domain adaptation implicitly. Jiang et
al. (2008) formulate a support vector machine (SVM; Vap-
nik 1998) model that uses support vectors of the source do-
main to improve the generalization performance on the tar-
get domain. Duan et al. (2009; 2010) learn a cross-domain
kernel function and an SVM model by jointly minimizing
the structural risk of the classifier and the mismatch between
data distributions of the two domains. Bergamo and Torre-
sani (2010) exploit strongly-labeled target domain data to
improve labeling of weakly-labeled source domain hence to
improve knowledge transfer between the two domains using
a transductive SVM model.

Dai et al. (2009) use a risk minimization framework that
couples two Markov chains defined on labels and features of
the source and target domains with different feature repre-
sentations. Hoffman et al. (2013) learn a linear transforma-
tion to map target domain data points into the source domain
and a multiclass classifier in the source domain jointly using
a coupled optimization problem.

Gopalan, Li, and Chellappa (2011) propose a manifold
learning approach that maps labeled data from source do-
main and unlabeled data from target domain on the Grass-
mann manifold to learn a classifier there. Gong et al. (2012)
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Karmaşık hastalıkların modellenmesi
Farklı hastalıkların transfer öğrenimi ile modellenmesi

expression matrices) that are associated with mutation status across all
tumor types.
We analyzed 10 different tumor types and inferred predictive

models of the mutational status of all genes with mutation
rates >4% in at least 2 of the 10 tumor types (123 genes), as de-
termined from the Cancer Gene Census (https://cancer.sanger.ac.
uk/census/) (9). We assessed whether using KBTL to share in-
formation across tumor types yielded signatures with increased ac-
curacy in predicting mutation status compared with analyzing each
tumor type independently. KBTL has two potential advantages over
traditional learning approaches: (i) increased statistical robustness,
due to the larger sample size resulting from combining multiple
datasets during learning, and (ii) the ability to extract signals that are
common across datasets, which may reveal shared biological pro-
cesses across organ sites. For each gene mutation/tumor type
combination, we compared the pan-cancer KBTL-derived signa-
tures (multitask learning; see SI Materials and Methods) with those
obtained using the relevance vector machine (RVM), which is
analogous to KBTL applied to each tumor type in isolation (single-
task learning; see SI Materials and Methods) (10). KBTL improved
prediction accuracy compared with RVMs for 9 of 10 (90%) tumor
types averaged over all genes and for 93 of 123 (76%) genes aver-
aged over tumor types (Fig. 1 C and D and Dataset S1). Overall,
KBTL yielded improvements for 291 of 430 (68%) gene mutation/
tumor type pairs. KBTL yielded improved performance for 27 of 30
(90%) of gene mutation/tumor type pairs with greater than 20%
mutation frequency and for 66 of 81 (81%) gene mutation/tumor
type pairs with greater than 10% mutation frequency (Fig. 1E).
Most gene mutation/tumor type pairs for which KBTL did not yield
improved performance demonstrated low mutational frequencies,
suggesting insufficient positive samples for inference of classifiers.
Conjoint modeling was especially useful in predicting the status of
commonly mutated genes with known importance in carcinogenesis
(e.g., TP53, KRAS, and PIK3CA) (Dataset S1).

Fbw7 Predictive Signatures Are Enriched for Genes Associated with
Mitochondria. Five TCGA organ sites had sufficient FBXW7-mutant
samples (>4%) for KBTL analyses: bladder urothelial carcinoma
(BLCA), colon and rectum adenocarcinomas (COADREAD), head
and neck squamous cell carcinoma (HNSC), lung squamous cell
carcinoma (LUSC), and uterine corpus endometrial carcinoma
(UCEC). We modeled all five tumor types individually or con-
jointly using KBTL to derive transcriptional signatures inferred to
predict Fbw7 mutational status. To identify biological pathways
enriched within these signatures, we performed gene set enrich-
ment analysis (GSEA) of the 500 most predictive genes (of
20,530 total transcripts) using the DAVID 6.8 platform (https://
david.ncifcrf.gov). Surprisingly, KBTL revealed that genes asso-
ciated with mitochondrial function (hereafter termed “mitochon-
drial signature genes” or “MSGs”) were the dominant biologic
processes enriched within Fbw7 predictive gene signatures across
tumor types (Fig. 1F). Dataset S2 shows the complete DAVID
6.8 analysis for COADREAD. In contrast, when analyzed by
single-task learning, MSGs ranked as the 56th most enriched gene
set associated with Fbw7 mutations averaged across tumor types.
Some tumor types, including glioblastomas, breast cancers, and

ovarian cancers, exhibit Fbw7 mRNA repression rather than
Fbw7 mutations (11–13). To determine if MSGs were similarly as-
sociated with Fbw7 loss via mRNA repression, we developed single-
task transcriptional signatures predictive of the 10% of tumors with
the lowest amount of Fbw7 expression in each organ site (Dataset
S3). Remarkably, MSGs were the most highly enriched feature in
each of these signatures, suggesting that Fbw7 loss caused by either
mutations or reduced mRNA expression is widely associated with
metabolic dysregulation in primary tumors.

Fbw7 Mutations Increase Mitochondrial Gene Expression in Colorectal
Cancer Cell Lines. Due to the robust predictive power of the MSG
module, we sought to validate a direct relationship between
Fbw7 mutations and increased MSG expression. We focused on
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Fig. 1. KBTL improves predictive power for commonly mutated cancer genes and reveals enriched mitochondrial-associated gene expression in pan-cancer
Fbw7 predictive signatures. (A and B) Depiction of single-task kernel-based learning (A) and KBTL (B) approaches used to develop gene-expression signatures that
predict the mutational status of a specific gene from single tumor types, versus conjoint Pan-cancer analyses, respectively (see text and SI Materials and Methods).
(C) Classification accuracy [area under the receiver operator characteristic curve (AUROC)] for separate analysis (RVM, x axis) vs. joint analysis (KBTL, y axis). Results are
averaged across all genes for each tumor type. (D) Average mutation frequency of each gene (x axis) vs. percent improvement in classification accuracy (AUROC) for
KBTL vs. RVM. Results are averaged across all tumor types for each gene weighted with cohort sizes. (E) Average mutation frequency of each gene (x axis) vs. percent
improvement in classification accuracy (AUROC) for KBTL vs. RVM. Results are displayed for each gene type/tumor type pair. (F) Ranking of the mitochondrial module
for each tumor type and consensus ranking across tumor types based on RVM (separate analysis) and KBTL (joint analysis). NA, not available.
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formulate a geodesic flow kernel to directly exploit intrin-
sic structures of computer vision data sets when transferring
knowledge between the domains.

Ben-David et al. (2007) learn a shared subspace by max-
imizing the margin on the labeled source domain data and
minimizing the distance between the data distributions of
the two domains. Argyriou, Maurer, and Pontil (2008) di-
vide image classification tasks into groups and learn a shared
subspace for each group to transfer knowledge. Saenko et
al. (2010) learn a nonlinear transformation to find a shared
subspace by mapping two data points from different do-
mains as close as possible if they are from the same class
and as distant as possible otherwise. Kulis, Saenko, and Dar-
rell (2011) generalize the same idea to the asymmetric set-
ting (i.e., different feature representations). Pan et al. (2011)
find low-dimensional latent representations for data points
from different domains in a shared subspace by minimizing
the maximum mean discrepancy between domains and max-
imizing the dependence between labels and latent features.

Bahadori, Liu, and Zhang (2011) give a transduc-
tive large-margin optimization algorithm that projects data
points from the source and target domains into a shared sub-
space by minimizing reconstruction and prediction losses
jointly. Duan, Xu, and Tsang (2012) map data points from
different domains into a shared subspace using separate
projection matrices and augment the projected data points
with original features before feeding them into a super-
vised learning algorithm such as an SVM. Han, Liao, and
Carin (2012) formulate a probabilistic model that generates
the original features of heterogeneous domains from their
latent representations in a shared subspace and learns a joint
probit classifier in this subspace.

1.2 Our Contribution
Previous methods have been proposed for transfer learning,
but none of them offers a fully Bayesian solution to do-
main adaptation on heterogenous domains in a discrimina-
tive setting. In this paper, we choose to find a shared sub-
space between the tasks using task-specific kernel-based di-
mensionality reduction models (Schölkopf and Smola 2002;
Shawe-Taylor and Cristianini 2004) and to learn a coupled
linear classifier in this subspace by combining these two
steps with a fully Bayesian framework. Our formulation
shares some similarities:

(i) with Kulis, Saenko, and Darrell (2011) and Pan et
al. (2011) due to the shared subspace between do-
mains,

(ii) with Hoffman et al. (2013) due to the coupled classi-
fier,

(iii) with Bahadori, Liu, and Zhang (2011), Duan, Xu, and
Tsang (2012), and Han, Liao, and Carin (2012) due to
both parts.

We discuss the differences between our method and these
methods in Section 2.5 after giving a detailed description of
our method, which can also be interpreted as the generaliza-
tion of the relevance vector machine (RVM; Tipping 2001)
to transfer learning setup.
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Figure 1: Flowchart of kernelized transfer learning for bi-
nary classification.

1.3 Preliminaries and Notation
We assume that there are T related binary classification tasks
but their data points come from heterogeneous domains,
namely, X1,X2, . . . ,XT . For each task, we are given an in-
dependent and identically distributed sample Xt = {xt,i 2
Xt}i2It

and a label vector yt = {yt,i 2 {�1,+1}}i2It
,

where It gives the indices of data points in task t. There is
a task-specific kernel function for each task to define sim-
ilarities between the data points, i.e., kt : Xt ⇥ Xt ! R,
which is used to calculate the corresponding kernel matrix
Kt = {kt(xt,i,xt,j)}i2It,j2It .

Figure 1 illustrates the method we propose to learn a con-
joint model across the tasks; it is composed of two main
parts: (i) projecting data points from different tasks into a
shared subspace using a separate kernel-based dimensional-
ity reduction model for each task and (ii) performing cou-
pled binary classification in this subspace using a common
set of classification parameters. We first briefly explain these
two parts and introduce the notation used.

We first perform feature extraction using the input kernel
matrices {Kt 2 RNt⇥Nt}Tt=1 and the task-specific projec-
tion matrices {At 2 RNt⇥R}Tt=1, where Nt is the number
of data points in task t and R is the subspace dimensionality.
After the projection, we obtain the hidden representations of
data points in the shared subspace, i.e., {Ht = A>

t Kt}Tt=1.
Using a kernel-based formulation has two main implica-
tions: (i) We can apply our method to tasks with very high di-
mensional representations. (ii) We can learn better subspaces
using nonlinear or domain-specific kernel functions.

The coupled classification part calculates the predicted
outputs {f t = H>

t w+1b}Tt=1 in the shared subspace using
the same set of classification parameters {b 2 R,w 2 RR}.
These outputs are mapped to labels by looking at their signs.

2 Kernelized Bayesian Transfer Learning
We formulate a probabilistic model, called kernelized
Bayesian transfer learning (KBTL), for the method de-
scribed earlier. We can derive a very efficient inference algo-
rithm using variational approximation because our method
combines the kernel-based dimensionality reduction and
coupled binary classification parts with a fully conjugate
probabilistic model.

Figure 2 gives the graphical model of KBTL with hyper-
parameters, priors, latent variables, and model parameters.
As described earlier, the main idea can be summarized as:
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Figure 2: Graphical model of kernelized Bayesian transfer
learning for binary classification.

(i) to find hidden representations for the data points of all
tasks by mapping them into a shared subspace with the help
of kernel matrices and task-specific projection matrices and
(ii) to perform coupled binary classification in this subspace
using a common set of classification parameters.

There are some additions to the notation described ear-
lier: The Nt ⇥R matrix of priors for the entries of the task-
specific projection matrix At is denoted by ⇤t. The R ⇥ 1
vector of priors for the classification parameters w is de-
noted by ⌘. The prior for the bias parameter b is denoted
by �. For these three priors, there are three sets of hyper-
parameters, namely, {↵�, ��}, {↵⌘, �⌘}, and {↵� , ��}. The
standard deviation for the hidden representations is given as
�h. As short-hand notations, the hyper-parameters are de-
noted by ⇣ = {↵⌘, �⌘, ↵� , �� , ↵�, ��, �h, ⌫}, the priors by
⌅ = {�,⌘, {⇤t}Tt=1}, and the latent variables and model
parameters by ⇥ = {b,w, {f t,At,Ht}Tt=1}. Dependence
on ⇣ is omitted for clarity throughout the manuscript.

The distributional assumptions of the kernel-based di-
mensionality reduction part are defined as

�i
t,s ⇠ G(�i

t,s;↵�, ��) 8(t, i, s)
ait,s|�i

t,s ⇠ N (ait,s; 0, (�
i
t,s)

�1) 8(t, i, s)
hs
t,i|at,s,kt,i ⇠ N (hs

t,i;a
>
t,skt,i, �

2
h) 8(t, s, i),

where the superscript indexes the rows and the subscript in-
dexes the columns. N (·;µ,⌃) represents the normal distri-
bution with the mean vector µ and the covariance matrix
⌃. G(·;↵, �) denotes the gamma distribution with the shape
parameter ↵ and the scale parameter �.

The coupled binary classification part has the following
distributional assumptions:

� ⇠ G(�;↵� , ��)

b|� ⇠ N (b; 0, ��1)

⌘s ⇠ G(⌘s;↵⌘, �⌘) 8s
ws|⌘s ⇠ N (ws; 0, ⌘

�1
s ) 8s

ft,i|b,w,ht,i ⇠ N (ft,i;w
>ht,i + b, 1) 8(t, i)

yt,i|ft,i ⇠ �(ft,iyt,i > ⌫) 8(t, i),
where the predicted outputs {f t}Tt=1, similar to the discrim-
inant outputs in SVMs, are introduced to make the infer-
ence procedures efficient (Albert and Chib 1993). The non-
negative margin parameter ⌫ is introduced to resolve the
scaling ambiguity and to place a low-density region between

two classes, similar to the margin idea in SVMs, which is
generally used for semi-supervised learning (Lawrence and
Jordan 2005). �(·) represents the Kronecker delta function
that returns 1 if its argument is true and 0 otherwise.

2.1 Inference Using Variational Bayes
To obtain an efficient inference mechanism, we formu-
late a deterministic variational approximation instead of a
Gibbs sampling approach, which is computationally expen-
sive (Gelfand and Smith 1990). The variational methods use
a lower bound on the marginal likelihood using an ensemble
of factored posteriors to find the joint parameter distribution
(Beal 2003). We can write the factorable ensemble approxi-
mation of the required posterior as

p(⇥,⌅|{Kt,yt}Tt=1) ⇡ q(⇥,⌅) =

TY

t=1

⇥
q(⇤t)q(At)q(Ht)

⇤
q(�)q(⌘)q(b,w)

TY

t=1

q(f t)

and define each factor in the ensemble just like its full con-
ditional distribution:

q(⇤t) =
Y

i2It

RY

s=1
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i
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i
t,s))

q(At) =
RY

s=1

N (at,s;µ(at,s),⌃(at,s))

q(Ht) =
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q(�) = G(�;↵(�), �(�))

q(⌘) =
RY
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G(⌘s;↵(⌘s), �(⌘s))

q(b,w) = N
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b
w

�
;µ(b,w),⌃(b,w)

◆

q(f t) =
Y

i2It

T N (ft,i;µ(ft,i),⌃(ft,i), ⇢(ft,i)),

where ↵(·), �(·), µ(·), and ⌃(·) denote the shape parame-
ter, the scale parameter, the mean vector, and the covariance
matrix for their arguments, respectively. T N (·;µ,⌃, ⇢(·))
denotes the truncated normal distribution with the mean vec-
tor µ, the covariance matrix ⌃, and the truncation rule ⇢(·)
such that T N (·;µ,⌃, ⇢(·)) / N (·;µ,⌃) if ⇢(·) is true and
T N (·;µ,⌃, ⇢(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s in-
equality:

log p({yt}Tt=1|{Kt}Tt=1) �
Eq(⇥,⌅)

⇥
log p({yt}Tt=1,⇥,⌅|{Kt}Tt=1)

⇤

� Eq(⇥,⌅)

⇥
log q(⇥,⌅)

⇤

and optimize this bound by maximizing with respect to each
factor separately until convergence. The approximate poste-
rior distribution of a specific factor ⌧ can be found as

q(⌧ ) / exp
⇣
Eq({⇥,⌅}\⌧)

⇥
log p({yt}Tt=1,⇥,⌅|{Kt}Tt=1)

⇤⌘
.
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formulate a geodesic flow kernel to directly exploit intrin-
sic structures of computer vision data sets when transferring
knowledge between the domains.

Ben-David et al. (2007) learn a shared subspace by max-
imizing the margin on the labeled source domain data and
minimizing the distance between the data distributions of
the two domains. Argyriou, Maurer, and Pontil (2008) di-
vide image classification tasks into groups and learn a shared
subspace for each group to transfer knowledge. Saenko et
al. (2010) learn a nonlinear transformation to find a shared
subspace by mapping two data points from different do-
mains as close as possible if they are from the same class
and as distant as possible otherwise. Kulis, Saenko, and Dar-
rell (2011) generalize the same idea to the asymmetric set-
ting (i.e., different feature representations). Pan et al. (2011)
find low-dimensional latent representations for data points
from different domains in a shared subspace by minimizing
the maximum mean discrepancy between domains and max-
imizing the dependence between labels and latent features.

Bahadori, Liu, and Zhang (2011) give a transduc-
tive large-margin optimization algorithm that projects data
points from the source and target domains into a shared sub-
space by minimizing reconstruction and prediction losses
jointly. Duan, Xu, and Tsang (2012) map data points from
different domains into a shared subspace using separate
projection matrices and augment the projected data points
with original features before feeding them into a super-
vised learning algorithm such as an SVM. Han, Liao, and
Carin (2012) formulate a probabilistic model that generates
the original features of heterogeneous domains from their
latent representations in a shared subspace and learns a joint
probit classifier in this subspace.

1.2 Our Contribution
Previous methods have been proposed for transfer learning,
but none of them offers a fully Bayesian solution to do-
main adaptation on heterogenous domains in a discrimina-
tive setting. In this paper, we choose to find a shared sub-
space between the tasks using task-specific kernel-based di-
mensionality reduction models (Schölkopf and Smola 2002;
Shawe-Taylor and Cristianini 2004) and to learn a coupled
linear classifier in this subspace by combining these two
steps with a fully Bayesian framework. Our formulation
shares some similarities:

(i) with Kulis, Saenko, and Darrell (2011) and Pan et
al. (2011) due to the shared subspace between do-
mains,

(ii) with Hoffman et al. (2013) due to the coupled classi-
fier,

(iii) with Bahadori, Liu, and Zhang (2011), Duan, Xu, and
Tsang (2012), and Han, Liao, and Carin (2012) due to
both parts.

We discuss the differences between our method and these
methods in Section 2.5 after giving a detailed description of
our method, which can also be interpreted as the generaliza-
tion of the relevance vector machine (RVM; Tipping 2001)
to transfer learning setup.
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Figure 1: Flowchart of kernelized transfer learning for bi-
nary classification.

1.3 Preliminaries and Notation
We assume that there are T related binary classification tasks
but their data points come from heterogeneous domains,
namely, X1,X2, . . . ,XT . For each task, we are given an in-
dependent and identically distributed sample Xt = {xt,i 2
Xt}i2It

and a label vector yt = {yt,i 2 {�1,+1}}i2It
,

where It gives the indices of data points in task t. There is
a task-specific kernel function for each task to define sim-
ilarities between the data points, i.e., kt : Xt ⇥ Xt ! R,
which is used to calculate the corresponding kernel matrix
Kt = {kt(xt,i,xt,j)}i2It,j2It .

Figure 1 illustrates the method we propose to learn a con-
joint model across the tasks; it is composed of two main
parts: (i) projecting data points from different tasks into a
shared subspace using a separate kernel-based dimensional-
ity reduction model for each task and (ii) performing cou-
pled binary classification in this subspace using a common
set of classification parameters. We first briefly explain these
two parts and introduce the notation used.

We first perform feature extraction using the input kernel
matrices {Kt 2 RNt⇥Nt}Tt=1 and the task-specific projec-
tion matrices {At 2 RNt⇥R}Tt=1, where Nt is the number
of data points in task t and R is the subspace dimensionality.
After the projection, we obtain the hidden representations of
data points in the shared subspace, i.e., {Ht = A>

t Kt}Tt=1.
Using a kernel-based formulation has two main implica-
tions: (i) We can apply our method to tasks with very high di-
mensional representations. (ii) We can learn better subspaces
using nonlinear or domain-specific kernel functions.

The coupled classification part calculates the predicted
outputs {f t = H>

t w+1b}Tt=1 in the shared subspace using
the same set of classification parameters {b 2 R,w 2 RR}.
These outputs are mapped to labels by looking at their signs.

2 Kernelized Bayesian Transfer Learning
We formulate a probabilistic model, called kernelized
Bayesian transfer learning (KBTL), for the method de-
scribed earlier. We can derive a very efficient inference algo-
rithm using variational approximation because our method
combines the kernel-based dimensionality reduction and
coupled binary classification parts with a fully conjugate
probabilistic model.

Figure 2 gives the graphical model of KBTL with hyper-
parameters, priors, latent variables, and model parameters.
As described earlier, the main idea can be summarized as:

1832

⇤t

Kt

At

Ht

↵�

��

↵� ��

↵⌘

�⌘

�2
h

⌫

b

w ⌘

�f t

yt

tasks

Figure 2: Graphical model of kernelized Bayesian transfer
learning for binary classification.

(i) to find hidden representations for the data points of all
tasks by mapping them into a shared subspace with the help
of kernel matrices and task-specific projection matrices and
(ii) to perform coupled binary classification in this subspace
using a common set of classification parameters.

There are some additions to the notation described ear-
lier: The Nt ⇥R matrix of priors for the entries of the task-
specific projection matrix At is denoted by ⇤t. The R ⇥ 1
vector of priors for the classification parameters w is de-
noted by ⌘. The prior for the bias parameter b is denoted
by �. For these three priors, there are three sets of hyper-
parameters, namely, {↵�, ��}, {↵⌘, �⌘}, and {↵� , ��}. The
standard deviation for the hidden representations is given as
�h. As short-hand notations, the hyper-parameters are de-
noted by ⇣ = {↵⌘, �⌘, ↵� , �� , ↵�, ��, �h, ⌫}, the priors by
⌅ = {�,⌘, {⇤t}Tt=1}, and the latent variables and model
parameters by ⇥ = {b,w, {f t,At,Ht}Tt=1}. Dependence
on ⇣ is omitted for clarity throughout the manuscript.

The distributional assumptions of the kernel-based di-
mensionality reduction part are defined as

�i
t,s ⇠ G(�i

t,s;↵�, ��) 8(t, i, s)
ait,s|�i

t,s ⇠ N (ait,s; 0, (�
i
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�1) 8(t, i, s)
hs
t,i|at,s,kt,i ⇠ N (hs
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>
t,skt,i, �

2
h) 8(t, s, i),

where the superscript indexes the rows and the subscript in-
dexes the columns. N (·;µ,⌃) represents the normal distri-
bution with the mean vector µ and the covariance matrix
⌃. G(·;↵, �) denotes the gamma distribution with the shape
parameter ↵ and the scale parameter �.

The coupled binary classification part has the following
distributional assumptions:

� ⇠ G(�;↵� , ��)

b|� ⇠ N (b; 0, ��1)

⌘s ⇠ G(⌘s;↵⌘, �⌘) 8s
ws|⌘s ⇠ N (ws; 0, ⌘

�1
s ) 8s

ft,i|b,w,ht,i ⇠ N (ft,i;w
>ht,i + b, 1) 8(t, i)

yt,i|ft,i ⇠ �(ft,iyt,i > ⌫) 8(t, i),
where the predicted outputs {f t}Tt=1, similar to the discrim-
inant outputs in SVMs, are introduced to make the infer-
ence procedures efficient (Albert and Chib 1993). The non-
negative margin parameter ⌫ is introduced to resolve the
scaling ambiguity and to place a low-density region between

two classes, similar to the margin idea in SVMs, which is
generally used for semi-supervised learning (Lawrence and
Jordan 2005). �(·) represents the Kronecker delta function
that returns 1 if its argument is true and 0 otherwise.

2.1 Inference Using Variational Bayes
To obtain an efficient inference mechanism, we formu-
late a deterministic variational approximation instead of a
Gibbs sampling approach, which is computationally expen-
sive (Gelfand and Smith 1990). The variational methods use
a lower bound on the marginal likelihood using an ensemble
of factored posteriors to find the joint parameter distribution
(Beal 2003). We can write the factorable ensemble approxi-
mation of the required posterior as

p(⇥,⌅|{Kt,yt}Tt=1) ⇡ q(⇥,⌅) =

TY

t=1

⇥
q(⇤t)q(At)q(Ht)

⇤
q(�)q(⌘)q(b,w)

TY

t=1

q(f t)

and define each factor in the ensemble just like its full con-
ditional distribution:
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q(f t) =
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i2It

T N (ft,i;µ(ft,i),⌃(ft,i), ⇢(ft,i)),

where ↵(·), �(·), µ(·), and ⌃(·) denote the shape parame-
ter, the scale parameter, the mean vector, and the covariance
matrix for their arguments, respectively. T N (·;µ,⌃, ⇢(·))
denotes the truncated normal distribution with the mean vec-
tor µ, the covariance matrix ⌃, and the truncation rule ⇢(·)
such that T N (·;µ,⌃, ⇢(·)) / N (·;µ,⌃) if ⇢(·) is true and
T N (·;µ,⌃, ⇢(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s in-
equality:

log p({yt}Tt=1|{Kt}Tt=1) �
Eq(⇥,⌅)

⇥
log p({yt}Tt=1,⇥,⌅|{Kt}Tt=1)

⇤

� Eq(⇥,⌅)

⇥
log q(⇥,⌅)

⇤

and optimize this bound by maximizing with respect to each
factor separately until convergence. The approximate poste-
rior distribution of a specific factor ⌧ can be found as

q(⌧ ) / exp
⇣
Eq({⇥,⌅}\⌧)

⇥
log p({yt}Tt=1,⇥,⌅|{Kt}Tt=1)

⇤⌘
.
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expression matrices) that are associated with mutation status across all
tumor types.
We analyzed 10 different tumor types and inferred predictive

models of the mutational status of all genes with mutation
rates >4% in at least 2 of the 10 tumor types (123 genes), as de-
termined from the Cancer Gene Census (https://cancer.sanger.ac.
uk/census/) (9). We assessed whether using KBTL to share in-
formation across tumor types yielded signatures with increased ac-
curacy in predicting mutation status compared with analyzing each
tumor type independently. KBTL has two potential advantages over
traditional learning approaches: (i) increased statistical robustness,
due to the larger sample size resulting from combining multiple
datasets during learning, and (ii) the ability to extract signals that are
common across datasets, which may reveal shared biological pro-
cesses across organ sites. For each gene mutation/tumor type
combination, we compared the pan-cancer KBTL-derived signa-
tures (multitask learning; see SI Materials and Methods) with those
obtained using the relevance vector machine (RVM), which is
analogous to KBTL applied to each tumor type in isolation (single-
task learning; see SI Materials and Methods) (10). KBTL improved
prediction accuracy compared with RVMs for 9 of 10 (90%) tumor
types averaged over all genes and for 93 of 123 (76%) genes aver-
aged over tumor types (Fig. 1 C and D and Dataset S1). Overall,
KBTL yielded improvements for 291 of 430 (68%) gene mutation/
tumor type pairs. KBTL yielded improved performance for 27 of 30
(90%) of gene mutation/tumor type pairs with greater than 20%
mutation frequency and for 66 of 81 (81%) gene mutation/tumor
type pairs with greater than 10% mutation frequency (Fig. 1E).
Most gene mutation/tumor type pairs for which KBTL did not yield
improved performance demonstrated low mutational frequencies,
suggesting insufficient positive samples for inference of classifiers.
Conjoint modeling was especially useful in predicting the status of
commonly mutated genes with known importance in carcinogenesis
(e.g., TP53, KRAS, and PIK3CA) (Dataset S1).

Fbw7 Predictive Signatures Are Enriched for Genes Associated with
Mitochondria. Five TCGA organ sites had sufficient FBXW7-mutant
samples (>4%) for KBTL analyses: bladder urothelial carcinoma
(BLCA), colon and rectum adenocarcinomas (COADREAD), head
and neck squamous cell carcinoma (HNSC), lung squamous cell
carcinoma (LUSC), and uterine corpus endometrial carcinoma
(UCEC). We modeled all five tumor types individually or con-
jointly using KBTL to derive transcriptional signatures inferred to
predict Fbw7 mutational status. To identify biological pathways
enriched within these signatures, we performed gene set enrich-
ment analysis (GSEA) of the 500 most predictive genes (of
20,530 total transcripts) using the DAVID 6.8 platform (https://
david.ncifcrf.gov). Surprisingly, KBTL revealed that genes asso-
ciated with mitochondrial function (hereafter termed “mitochon-
drial signature genes” or “MSGs”) were the dominant biologic
processes enriched within Fbw7 predictive gene signatures across
tumor types (Fig. 1F). Dataset S2 shows the complete DAVID
6.8 analysis for COADREAD. In contrast, when analyzed by
single-task learning, MSGs ranked as the 56th most enriched gene
set associated with Fbw7 mutations averaged across tumor types.
Some tumor types, including glioblastomas, breast cancers, and

ovarian cancers, exhibit Fbw7 mRNA repression rather than
Fbw7 mutations (11–13). To determine if MSGs were similarly as-
sociated with Fbw7 loss via mRNA repression, we developed single-
task transcriptional signatures predictive of the 10% of tumors with
the lowest amount of Fbw7 expression in each organ site (Dataset
S3). Remarkably, MSGs were the most highly enriched feature in
each of these signatures, suggesting that Fbw7 loss caused by either
mutations or reduced mRNA expression is widely associated with
metabolic dysregulation in primary tumors.

Fbw7 Mutations Increase Mitochondrial Gene Expression in Colorectal
Cancer Cell Lines. Due to the robust predictive power of the MSG
module, we sought to validate a direct relationship between
Fbw7 mutations and increased MSG expression. We focused on
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Fig. 1. KBTL improves predictive power for commonly mutated cancer genes and reveals enriched mitochondrial-associated gene expression in pan-cancer
Fbw7 predictive signatures. (A and B) Depiction of single-task kernel-based learning (A) and KBTL (B) approaches used to develop gene-expression signatures that
predict the mutational status of a specific gene from single tumor types, versus conjoint Pan-cancer analyses, respectively (see text and SI Materials and Methods).
(C) Classification accuracy [area under the receiver operator characteristic curve (AUROC)] for separate analysis (RVM, x axis) vs. joint analysis (KBTL, y axis). Results are
averaged across all genes for each tumor type. (D) Average mutation frequency of each gene (x axis) vs. percent improvement in classification accuracy (AUROC) for
KBTL vs. RVM. Results are averaged across all tumor types for each gene weighted with cohort sizes. (E) Average mutation frequency of each gene (x axis) vs. percent
improvement in classification accuracy (AUROC) for KBTL vs. RVM. Results are displayed for each gene type/tumor type pair. (F) Ranking of the mitochondrial module
for each tumor type and consensus ranking across tumor types based on RVM (separate analysis) and KBTL (joint analysis). NA, not available.
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colorectal cancer (CRC), which is the most prevalent Fbw7-
associated cancer for which KBTL identified MSGs as the top-
ranked enriched process (Fig. 1F). To establish a causal re-
lationship between Fbw7 mutations and MSG expression, we
generated isogenic CRC cell line panels that differed in Fbw7
status by mutating the endogenous FBXW7 locus through adeno-
associated virus (AAV) gene targeting (Fig. S1) (14). We engi-
neered Hct116 cells, which are normally Fbw7+/+, to contain
either a heterozygous Fbw7ARG mutation (Fbw7+/R505C) or a
homozygous null mutation (Fbw7−/−) (Fig. 2A) (14). Conversely,
we engineered LoVo, a CRC cell line with a natural Fbw7R505C/+

mutation, to correct the mutant allele and revert these cells to
Fbw7+/+ (two independent clones, A and B, were derived to
reduce clonal selection artifacts) (Fig. 2A). Finally, we made
Fbw7+/R505C and Fbw7−/− mutations in DLD1, another Fbw7+/+
CRC cell line. Together, these cell panels provided comple-
mentary systems in which Fbw7 function was either impaired
(Hct116 and DLD1) or restored (LoVo).
We previously characterized Fbw7 substrates in Fbw7-mutant

Hct116 cells and extended these analyses to include these cell
lines (14, 15). Cyclin E and Myc exhibit the largest Fbw7-dependent
changes in CRC cell lines. Cyclin E abundance and its associated
kinase activity (which specifically measures the pool of active cyclin
E targeted by SCFFbw7) were greatly increased in Fbw7−/− cells (Fig.
2B). In contrast, Fbw7R505/+ mutations caused small increases in
cyclin E abundance and activity in Hct116 and DLD1 cells, and the
LoVo revertants exhibited slightly reduced cyclin E activity com-
pared with parental LoVo cells. Because c-Myc represses its own
transcription, Fbw7 mutations that prolong Myc turnover may not
increase c-Myc steady-state abundance, and c-Myc turnover is the
most sensitive assay for its degradation by Fbw7 (14, 15). Fbw7−/−
cells exhibited substantial c-Myc stabilization, whereas Fbw7R505C/+
cells exhibited intermediate Myc stability (Fig. 2C). These findings
are consistent with the modest Myc stabilization seen when
Fbw7 dimerization is prevented, because Fbw7ARG/+ mutations

reduce the amount of dimericWT-Fbw7 (15). Other substrates were
not appreciably changed by Fbw7ARG/+ mutations. We were unable
to detect PGC-1α protein in any of these cell lines (Fig. S1C).
To determine the role of Fbw7 in regulating MSGs, we measured

the expression of a panel of MSGs in the isogenic Hct116 and LoVo
series. Compared with parental Hct116 cells, both the Fbw7ARG/+

and Fbw7−/− Hct116 cell lines exhibited increased MSG expression
(Fig. 2). Conversely, the restoration of normal Fbw7 function in
LoVo cells reduced MSG expression in both gene-targeted clones
(Fig. 2E). These studies validated the KBTL prediction that
Fbw7 mutations directly increase MSG expression, which is con-
served from primary tumors to cell lines.

Fbw7 Regulates Mitochondrial Function in CRC Cells. Having dem-
onstrated deregulated MSG expression in Fbw7-mutant cells, we
next determined if Fbw7 mutations alter cellular metabolism. We
measured oxygen-consumption rates (OCR) and extracellular
acidification rates (ECARs), which reflect oxidative and glycolytic
metabolism, respectively. In both the Hct116 and LoVo panels,
basal and maximal OCR, as revealed by the addition of the
uncoupling agent carbonyl cyanide-4-(trifluoromethoxy) phenyl-
hydrazone (FCCP), were significantly higher in Fbw7ARG/+ and
Fbw7−/− cells than in Fbw7+/+ cells (Fig. 3 A and B). We also ob-
served Fbw7-dependent OCR changes in DLD1 cells (Fig. 3C).
Basal ECARs were lower in LoVo cells than in Fbw7+/+-reverted
LoVo cells but were higher in Fbw7ARG/+ and Fbw7−/− Hct116 cell
lines than in parental Fbw7+/+ Hct116 cells (Fig. S2 A and B). To
investigate these differences, we compared OCR responses to the
addition of glutamine, an alternative respiratory substrate in cancer
cells via glutaminolysis (Fig. 3 G and H). Glutamine addition
stimulated the OCR to a greater extent in Fbw7ARG and Fbw7−/−
Hct116 cells than in parental cells but failed to stimulate the OCR
in Fbw7+/ARG LoVo cells compared with reverted Fbw7+/+ cells.
Together, these results suggest that increased respiration in Fbw7-
deficient cancer cells is associated with different fuel choices in
Hct116 cells (glutamine) and LoVo cells (glucose).
Increased OCR/ECAR ratios indicate a shift from glycolytic to

oxidative metabolism. Accordingly, Fbw7-mutant LoVo, Hct116,
and DLD1 cell lines all had higher OCR/ECAR ratios than did
wild-type controls (Fig. 3 D–F). To reduce the chance of clonal
artifacts during AAV targeting, we also impaired Fbw7 function by
using shRNA to reduce Fbw7 expression in DLD1 cells and HT-
29 cells (another Fbw7+/+ CRC cell line) and by CRISPR/Cas9 to
genetically ablate Fbw7 in Hct116 cells (SI Materials and Methods
and Fig. S2 C–F). Finally, we extended these studies beyond CRC
and used shRNA to knock down Fbw7 expression in G14 cells, a
glioblastoma (GBM) stem cell line (Fig. S2 G–I) (16). In each case,
reduced Fbw7 function increased the OCR/ECAR ratio. Thus,
Fbw7 mutations are not associated with the Warburg effect (aerobic
glycolysis) common to many cancers but instead cause a shift toward
mitochondrial respiration.

Metabolic Consequences of Fbw7 Mutations in CRC Cells. Global
metabolite profiles revealed Fbw7-dependent metabolic changes in
greater detail. Principal component analyses separated Hct116 and
LoVo cells according to Fbw7 status, indicating that metabolite
profiles track with Fbw7 function (Fig. S3 A and C). Univariate
analyses of the Hct116 metabolome revealed increased abundance
of serine, glycine, creatine, and the serine metabolite glycerate and
decreased abundance of lactate and glutamine in both Fbw7ARG/+

and Fbw7−/− cells (Fig. 4A and Dataset S4). These changes are
consistent with increased glutaminolysis and possibly serine bio-
synthesis, a glycolysis-diverting pathway. In contrast, Fbw7-mutant
LoVo cells displayed a strong signature of increased glycolytic in-
termediates: metabolite set enrichment analysis identified glycolysis
(up), purine metabolism (up), and glycine, serine, and threonine
metabolism (down) as metabolic pathways with significant differ-
ences [false-discovery rate (FDR) = 0.037, 0.039, and 0.0498, re-
spectively] (Fig. 4B, Fig. S3D, and Dataset S4). The tricarboxylic
acid (TCA) cycle intermediate aconitate was highly elevated in
parental Fbw7-mutant LoVo cells compared with wild-type
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Fbw7 revertants. As LoVo Fbw7R505C/+ cells have low ECARs and
high OCRs, this supports the hypothesis that the Fbw7 mutation
increases glucose delivery to mitochondrial oxidative metabolism.
U-13C-glucose labeling was used to study Fbw7-dependent

changes in glucose flux in Fbw7−/− and Fbw7+/+ cells. Hct116
Fbw7-null cells showed an increased enrichment ratio for serine/
lactate compared with Fbw7+/+ cells, consistent with glycolytic di-
version to serine biosynthesis (Fig. 4C). There was uniformly re-
duced labeling of TCA cycle metabolites, indicating that a
mitochondrial fuel other than glucose sustained the higher OCR in
Fbw7−/− Hct116 cells. In contrast, LoVo cells revealed a striking
increase in glucose-derived carbon incorporation into TCA cycle
metabolites in Fbw7-mutant compared with Fbw7-revertant cells,
consistent with increased glucose oxidation (Fig. 4E). Total me-
tabolite levels from the glucose-tracing experiments demonstrated
higher citrate levels in parental LoVo cells and confirmed elevated
serine levels in Fbw7−/−Hct116 cells (Fig. 4D and F). The increased
mitochondrial metabolism associated with Fbw7 loss can thus be
sustained by oxidation of different carbon substrates, yielding dis-
tinct metabolic signatures in different cell types (Fig. 5).
Metabolic reprogramming in cancer cells may create therapeutic

vulnerabilities. We therefore studied whether Fbw7 mutations
sensitized CRC cell lines to metabolic inhibitors of the pathways
implicated above. Serine is the metabolite that exhibits the greatest
increase in Fbw7-mutant Hct116 cells but not in LoVo cells. Ac-
cordingly, Fbw7−/− Hct116 cells (but not LoVo cells) were highly
sensitized to two inhibitors (NCT-503 and CBR-5886) of phos-
phoglycerate dehydrogenase (PHGDH), a critical enzyme in serine
biosynthesis (Fig. 4G and Fig. S4C). The glycolytic diversion to
serine in Hct116 cells lacking Fbw7 is thus required for cellular
survival. Citrate is a donor of acetyl-CoA units for de novo fatty acid
synthesis after export from mitochondria and is an allosteric acti-
vator of acetyl-CoA carboxylase. The Fbw7-dependent 10-fold in-
crease in the citrate/α-ketoglutarate ratio in LoVo cells thus
suggested a possible diversion of mitochondrial citrate for lipid
biosynthesis. Indeed, Fbw7 regulates cholesterol and lipid metabo-
lism via degradation of SREBP1 and C/EBPα (17, 18), and parental
LoVo cells exhibited increased size and number of cytoplasmic lipid

droplets compared with revertants (Fig. S4 A and B). Accordingly,
inhibition of fatty acid synthesis with 5-(tetradecyloxy)-2-furoic acid
(TOFA), an acetyl-CoA carboxylase-1 (ACC1) inhibitor, was more
cytotoxic to LoVo Fbw7+/R505C cells than to either Fbw7-deficient
Hct116 cells or corresponding Fbw7+/+ cell lines (Fig. 4H and Fig.
S4F). DLD1 cells also displayed Fbw7-dependent TOFA sensitivity,
albeit to a lesser extent than seen in LoVo cells (Fig. S4 C and D).
Fbw7 mutations may thus lead to context-specific metabolic vul-
nerabilities in cancer cells.

Discussion
We describe an approach to infer the physiologic consequences of
oncogenic mutations in which we (i) derived gene-expression sig-
natures from TCGA datasets that predict a gene’s mutational status
across different tumor types and (ii) identified the shared biologic
pathways enriched within predictive signatures. The primary goal of
using transfer learning to conjointly study multiple organ sites was
to reveal the core consequences of mutations. Here, we validate this
approach by demonstrating a previously unknown role of Fbw7 in
the control of cellular metabolism. Given the increased predictive
power of conjoint modeling for most common oncogenic mutations,
this approach may be useful to study other pleiotropic cancer genes.
Several Fbw7 substrates regulate metabolism (e.g., PGC-1α,

Myc, Notch, and SREBP), and it was not unexpected to find
metabolic consequences of Fbw7 mutations. However, given
Fbw7’s prominent roles in processes such as proliferation and
differentiation, it was surprising to discover that metabolism was
the most highly conserved feature in Fbw7 predictive signatures.
Perhaps most striking is the similar metabolic dysregulation
caused by Fbw7ARG/+ and Fbw7−/− mutations. Fbw7ARG/+ mu-
tations do not stabilize substrates to the same extent as Fbw7-null
mutations (Fig. 2E and Fig. S1C), and with the possible exception
of Myc in T-lineage acute lymphoblastic leukemia (19), the
mechanisms driving Fbw7ARG/+ selection remain unknown (3, 8).
The similar bioenergetic consequences of Fbw7ARG/+ and Fbw7−/−
mutations thus suggest that metabolic reprogramming may, in
part, underlie the Fbw7 mutational spectrum in cancers. This
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Abstract

Motivation: Identifying molecular mechanisms that drive cancers from early to late stages is highly
important to develop new preventive and therapeutic strategies. Standard machine learning algo-
rithms could be used to discriminate early- and late-stage cancers from each other using their
genomic characterizations. Even though these algorithms would get satisfactory predictive per-
formance, their knowledge extraction capability would be quite restricted due to highly correlated
nature of genomic data. That is why we need algorithms that can also extract relevant information
about these biological mechanisms using our prior knowledge about pathways/gene sets.
Results: In this study, we addressed the problem of separating early- and late-stage cancers from
each other using their gene expression profiles. We proposed to use a multiple kernel learning
(MKL) formulation that makes use of pathways/gene sets (i) to obtain satisfactory/improved pre-
dictive performance and (ii) to identify biological mechanisms that might have an effect in cancer
progression. We extensively compared our proposed MKL on gene sets algorithm against two
standard machine learning algorithms, namely, random forests and support vector machines, on
20 diseases from the Cancer Genome Atlas cohorts for two different sets of experiments. Our
method obtained statistically significantly better or comparable predictive performance on most of
the datasets using significantly fewer gene expression features. We also showed that our algorithm
was able to extract meaningful and disease-specific information that gives clues about the progres-
sion mechanism.
Availability and implementation: Our implementations of support vector machine and multiple
kernel learning algorithms in R are available at https://github.com/mehmetgonen/gsbc together
with the scripts that replicate the reported experiments.
Contact:mehmetgonen@ku.edu.tr

1 Introduction

With the increasing availability of genomic characterizations for tu-

mour biopsies taken from patients, machine learning algorithms

such as support vector machines (SVMs; Cortes and Vapnik, 1995)

and random forests (RFs; Breiman, 2001) have been applied to dif-

ferent prediction tasks related to diagnosis, prognosis and treatment

of cancer. These algorithms obtained very high predictive perform-

ance in several applications. However, the most important aspect of

such automated systems should be extracting relevant and meaning-

ful knowledge from data, which is quite difficult to achieve in very

high-dimensional and correlated datasets such as genomic measure-

ments, for follow-up studies.

Understanding cancer formation and progression from early to

late stages is quite important since preventing and treating cancer at

early stages is much easier. We studied the problem of discriminat-

ing early- and late-stage cancers from each other using their gene ex-

pression profiles. This problem has been addressed in several

previous studies (Broët et al., 2006; Jagga and Gupta, 2014; Bhalla

et al., 2017).

Broët et al. (2006) tried to identify gene expression features that

separate early stages from late stages using a statistical score-based

approach on microarray data. Similarly, Jagga and Gupta (2014)

and Bhalla et al. (2017) developed correlation-based and threshold-

based algorithms, respectively, to pick individual genes that separate
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might obtain different molecular signatures from different subsets of

the same training set. Instead, we can integrate our prior knowledge

about genes into the model in the form of pathway/gene sets and

identify molecular signatures at this level.

Figure 1 shows the overall evaluation framework we developed in

this study. On 15 and 18 datasets we constructed out of 20 TCGA

cohorts (Table 1), we compared three machine learning algorithms,

namely, RFs, SVMs and MKL on gene sets. RFs and SVMs use gene

expression profiles of tumours to predict their pathological stages

(Fig. 1a). However, in addition to gene expression profiles, MKL also

uses a pathway/gene set database and extracts additional knowledge

about the differences between early- and late-stage cancers in the form

of gene sets by discarding some of them in the final classifier (Fig. 1b).

3.1 Problem formulation
We formulated the pathological stage prediction task as a binary classifi-

cation problem defined on the gene expression data, denoted as X , and

the phenotype (i.e. early-stage versus late-stage), denoted as Y. We arbi-

trarily called early-stage tumours as positive class and late-stage tumours

as negative class. For a given cohort, we represented the training dataset

as fðxi; yiÞgNi¼1, where N is the number of primary tumours, xi is the

gene expression profile of tumour i and yi 2 f$1;þ1g is the class label

of tumour i. This classification problem can be represented as learning a

discriminant function from gene expression profiles to phenotype, i.e.

f : X ! Y. After learning the discriminant function, we can make pre-

dictions for out-of-sample (i.e. unseen during training) tumours.

3.2 Random forests
By combining multiple weak decision trees using an ensemble strat-

egy, we can obtain more robust classification algorithms known as

RFs (Breiman, 2001). RFs were chosen as the baseline algorithm

since they were frequently used in the literature to predict disease

phenotypes from genomic measurements (Dı́az-Uriarte and Alvares

de Andrés, 2006; Pang et al., 2006; Statnikov et al., 2008; Nam

et al., 2009). Although they were reported to be very accurate classi-

fiers in terms of predictive performance in several applications, their

knowledge extraction capability is quite restricted. Decision tree

models in RFs are usually constructed on randomly selected boot-

strap samples, which make knowledge extraction very sensitive to

this bootstrapping step.

3.3 Support vector machines
SVMs formulate the binary classification problem as a convex quad-

ratic optimization model (Cortes and Vapnik, 1995). We give the

mathematical details of SVMs since our MKL on gene sets algo-

rithm, which we will describe next, is based on SVMs. The optimiza-

tion problem of binary classification SVMs can be written as

minimize
1

2
w> wþ C

XN

i¼1

ni

with respect to w 2 RD; n 2 RN ; b2 R

subject to yi w> xi þbð Þ & 1$ ni 8i

ni & 0 8i;

where w is the set of weights assigned to features, C is a positive

regularization parameter, n is the set of slack variables, D is the

number of input features (e.g. the number of genes in gene expres-

sion profiles) andbis the intercept parameter. Instead of solving this

primal optimization problem, we usually solve the corresponding

dual optimization problem (i) to reduce the number of decision vari-

ables and (ii) to be able to integrate kernel functions into the model,

leading to non-linear models. We first write the Lagrangian function

as

L ¼ 1

2
w>wþ C

XN

i¼1

ni $
XN

i¼1

ai yi w> xi þb
! "

$ 1þ ni
! "

$
XN

i¼1

bini;

and take derivatives with respect to the decision variables of the pri-

mal problem to find the following:

Table 1. Summary of 20 TCGA cohorts that we used in our two sets of experiments, namely, E1 and E2

Cohort Disease name Stage I Stage II Stage III Stage IV Early (E1) Late (E1) Total (E1) Early (E2) Late (E2) Total (E2)

ACC Adrenocortical carcinoma 9 37 16 15 — — — 46 31 77

BLCA Bladder urothelial carcinoma 2 130 140 134 — — — 132 274 406

BRCA Breast invasive carcinoma 181 619 247 20 181 886 1067 800 267 1067

COAD Colon adenocarcinoma 75 176 128 64 75 368 443 251 192 443

ESCA Esophageal carcinoma 16 69 49 8 16 126 142 85 57 142

HNSC Head and neck squamous cell carcinoma 25 70 78 259 25 407 429 95 337 429

KICH Kidney chromophobe 20 25 14 6 20 45 65 45 20 65

KIRC Kidney renal clear cell carcinoma 265 57 123 82 265 262 527 322 205 527

KIRP Kidney renal papillary cell carcinoma 172 21 51 15 172 87 259 193 66 259

LIHC Liver hepatocellular carcinoma 171 86 85 5 171 176 347 257 90 347

LUAD Lung adenocarcinoma 274 121 84 26 274 231 505 395 110 505

LUSC Lung squamous cell carcinoma 244 162 84 7 244 253 497 406 91 497

MESO Mesothelioma 10 16 44 16 — — — 26 60 86

PAAD Pancreatic adenocarcinoma 21 146 3 4 21 153 174 — — —

READ Rectum adenocarcinoma 30 51 51 24 30 126 156 81 75 156

SKCM Skin cutaneous melanoma 2 66 27 3 — — — 68 30 98

STAD Stomach adenocarcinoma 53 111 150 38 53 299 352 164 188 352

TGCT Testicular germ cell tumours 55 12 14 0 55 26 81 — — —

THCA Thyroid carcinoma 281 52 112 55 281 219 500 333 167 500

UVM Uveal melanoma 0 39 36 4 — — — 39 40 79

Total 1883 3664 5547 3738 2300 6038

Note: For each cohort, we report TCGA cohort code, disease name and number of samples in each stage together with details about the numbers of early-stage,

late-stage and total samples in experiments E1 and E2. We included 5547 and 6038 patients in total for our two sets of experiments E1 and E2, respectively.
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Karmaşık hastalıkların modellenmesi
Destek vektör makineleri

min.
1

2
w>w + C

N∑

i=1

ξi

w.r.t. w ∈ RD, ξ ∈ RN , b ∈ R
s.t. yi(w>xi + b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i
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>
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min. −
N∑

i=1

αi +
1

2

N∑

i=1

N∑

j=1

αiαjyiyj

P∑

m=1

ηmkm(xi,xj)

w.r.t. α ∈ RN , η ∈ RP

s.t.
N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i
P∑

m=1

ηm = 1

ηm ≥ 0 ∀m
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Karmaşık hastalıkların modellenmesi
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Karmaşık hastalıkların modellenmesi
Kestirim sonuçları (Erken aşama: I ve II. Geç aşama: III ve IV)
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Karmaşık hastalıkların modellenmesi
Kanser hastalarının sağ kalım analizi
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Karmaşık hastalıkların modellenmesi
Kanser hastalarının sağ kalım analizi

●
BLCA
(402)

BRCA
(1067)

CESC
(291)

COAD
(433)

ESCA
(160)

GBM
(152)

HNSC
(498)

KIRC
(526)

KIRP
(285)

LAML
(130)

LGG
(506)

LIHC
(365)

LUAD
(500)

LUSC
(493)

OV
(372)

PAAD
(176)

READ
(156)

SARC
(256)

STAD
(348)

UCEC
(539)

20 cancer types

7,655 patients
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Karmaşık hastalıkların modellenmesi
Sağ kalım analizi için destek vektör makineleri

min.
1

2
w>w + C

N∑

i=1

(ξ+i + (1− δi)ξ−i )

w.r.t. w ∈ RD, ξ+ ∈ RN , ξ− ∈ RN , b ∈ R
s.t. ε+ ξ+i ≥ yi −w>xi − b ∀i

ε+ ξ−i ≥ w>xi + b− yi ∀i
ξ+i ≥ 0 ∀i
ξ−i ≥ 0 ∀i
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Karmaşık hastalıkların modellenmesi
Sağ kalım analizi için destek vektör makineleri

min. −
N∑

i=1

yi(α
+
i − α−i ) + ε

N∑

i=1

(α+
i + α−i ) +

1

2

N∑

i=1

N∑

j=1

(α+
i − α−i )(α+

j − α−j )x>i xj

w.r.t. α+ ∈ RN , α− ∈ RN

s.t.
N∑

i=1

(α+
i − α−i ) = 0

C ≥ α+
i ≥ 0 ∀i

C(1− δi) ≥ α−i ≥ 0 ∀i
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Karmaşık hastalıkların modellenmesi
Sağ kalım analizi için çok çekirdekli destek vektör makineleri

min. −
N∑

i=1

yi(α
+
i − α−i ) + ε

N∑

i=1

(α+
i + α−i ) +

1

2

N∑

i=1

N∑

j=1

(α+
i − α−i )(α+

j − α−j )
P∑

m=1

ηmkm(xi,xj)

w.r.t. α+ ∈ RN , α− ∈ RN , η ∈ RP

s.t.
N∑

i=1

(α+
i − α−i ) = 0

C ≥ α+
i ≥ 0 ∀i

C(1− δi) ≥ α−i ≥ 0 ∀i
P∑

m=1

ηm = 1

ηm ≥ 0 ∀m
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Karmaşık hastalıkların modellenmesi
Sağ kalım analizi için çok çekirdekli destek vektör makineleri

η(t+1)
m =

η
(t)
m

√
N∑
i=1

N∑
j=1

(α
+(t)
i − α−(t)i )(α

+(t)
j − α−(t)j )km(xi,xj)

P∑
o=1

η
(t)
o

√
N∑
i=1

N∑
j=1

(α
+(t)
i − α−(t)i )(α

+(t)
j − α−(t)j )ko(xi,xj)

∀m
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Karmaşık hastalıkların modellenmesi
Sağ kalım analizi kestirim sonuçları

BLCA

p < 1e−3
p = 0.679

p = 0.018
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Karmaşık hastalıkların modellenmesi
Çoklu görev öğrenimi ile sağ kalım analizi
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multiple kernel learning
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Survival
analysis Vital Days to Days to last

status death follow-up
Alive NA 678
Dead 364 NA
...

...
...

Alive NA 2555
Dead 520 NA
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··
·
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fT

Survival
analysis Vital Days to Days to last

status death follow-up
Dead 456 NA
Dead 3200 NA
...

...
...

Alive NA 2208
Dead 1891 NA
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BLCA

p < 1e−3
p = 0.679

p < 1e−3
p = 0.018

p < 1e−3

p < 1e−3 p < 1e−3
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Sonuç

Yaşam bilimleri uygulamaları için çekirdek tabanlı yapay öğrenme yöntemleri

Az sayıda ve yüksek boyutlu örnekten öğrenebilme

Farklı özellikteki veri kaynaklarını birleştirebilme

Test edilebilir hipotezler üretmeye uygun bilgi çıkarımı
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Farklı özellikteki veri kaynaklarını birleştirebilme

Test edilebilir hipotezler üretmeye uygun bilgi çıkarımı

41/43



Sonuç
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Sonuç
Kaynak kodlar
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Destekler

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Hesaplamalı Onkoloji İçin Yolak Tabanlı Çekirdek Öğrenme Algoritmaları
(EEEAG 117E181)

Türkiye Bilimler Akademisi (TÜBA)
Üstün Başarılı Genç Bilim İnsanlarını Ödüllendirme Programı (GEBİP)

Bilim Akademisi (BA)
Bilim Akademisi Genç Bilim İnsanları Ödül Programı (BAGEP)
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